oxygenic$57048$ - definizione. Che cos'è oxygenic$57048$
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:     

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è oxygenic$57048$ - definizione

BIOLOGICAL PROCESS TO CONVERT LIGHT INTO CHEMICAL ENERGY
Photosynthesize; Photosynthetic; Photosythesize; Photosynthisis; Photosyntheis; Photosynthese; Photosynthesis and Respiration; Photosynthetic reactions; Photosynthasis; Photosinthesis; Photosynthesis equation; Photosyntesis; Photosintesis; Net photosynthesis; Photosynthate; Oxygen synthesis; Photosymthesis; Photosynthesise; History of C3 : C4 photosynthesis research; Photosynthesizing; Oxygenic photosynthesis; Photosynthesising; Reverse photosynthesis; Evolutionary origin of photosynthesis
  • Overview of the Calvin cycle and carbon fixation
  • [[Absorbance]] spectra of free chlorophyll ''a'' (<span style="color:blue;">blue</span>) and ''b'' (<span style="color:red;">red</span>) in a solvent. The action spectra of chlorophyll molecules are slightly modified ''in vivo'' depending on specific pigment–protein interactions.
  • plastoglobule (drop of lipids)}}
  • Overview of [[C4 carbon fixation]]. (Note that this image mistakenly shows lactic acid instead of pyruvate, and all the species ending in "-ate" are shown as unionized acids, such as malic acid and so on.)
  • Portrait of [[Jan Baptist van Helmont]] by [[Mary Beale]], c. 1674
  • The [[leaf]] is the primary site of photosynthesis in plants.
  • [[Melvin Calvin]] works in his photosynthesis laboratory.
  • Photorespiration
  • Schematic of photosynthesis in plants. The carbohydrates produced are stored in or used by the plant.
  • Plant cells with visible chloroplasts (from a moss, ''[[Plagiomnium affine]]'')
  • Composite image showing the global distribution of photosynthesis, including both oceanic [[phytoplankton]] and terrestrial [[vegetation]]. Dark red and blue-green indicate regions of high photosynthetic activity in the ocean and on land, respectively.
  • Photosynthesis changes sunlight into chemical energy, splits water to liberate O<sub>2</sub>, and fixes CO<sub>2</sub> into sugar.
  • Light-dependent reactions of photosynthesis at the thylakoid membrane
  • The "Z scheme"

Gram-negative bacteria         
  • [[Gram-positive]] and -negative [[bacteria]] are differentiated chiefly by their [[cell wall]] structure
  • Gram-negative [[cell wall]] structure
GROUP OF BACTERIA THAT DO NOT RETAIN THE GRAM STAIN USED IN BACTERIAL DIFFERENTIATION
Gram negative; Gram negative bacterium; Gram negative bacteria; Gram-negative bacterium; Gram-negative bacterial infections; Gram-negative oxygenic photosynthetic bacteria; Gramnegative bacteria; Negibacteria; Gram-negative bacilli; Gram-negative; Gram-; Diderms; Gram-negative bacterial; Diderm bacteria
Gram-negative bacteria are bacteria that do not retain the crystal violet stain used in the Gram staining method of bacterial differentiation. They are characterized by their cell envelopes, which are composed of a thin peptidoglycan cell wall sandwiched between an inner cytoplasmic cell membrane and a bacterial outer membrane.
photosynthesis         
Photosynthesis is the way that green plants make their food using sunlight. (TECHNICAL)
N-UNCOUNT
Photosynthesis         
·add. ·noun The process of constructive metabolism by which carbohydrates are formed from water vapor and the carbon dioxide of the air in the chlorophyll-containing tissues of plants exposed to the action of light. It was formerly called assimilation, but this is now commonly used as in animal physiology. The details of the process are not yet clearly known. Baeyer's theory is that the carbon dioxide is reduced to carbon monoxide, which, uniting with the hydrogen of the water in the cell, produces formaldehyde, the latter forming various sugars through polymerization. Vines suggests that the carbohydrates are secretion products of the chloroplasts, derived from decomposition of previously formed proteids. The food substances are usually quickly translocated, those that accumulate being changed to starch, which appears in the cells almost simultaneously with the sugars. The chloroplasts perform photosynthesis only in light and within a certain range of temperature, varying according to climate. This is the only way in which a plant is able to organize carbohydrates. All plants without a chlorophyll apparatus, as the fungi, must be parasitic or saprophytic.

Wikipedia

Photosynthesis

Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that, through cellular respiration, can later be released to fuel the organism's activities. Some of this chemical energy is stored in carbohydrate molecules, such as sugars and starches, which are synthesized from carbon dioxide and water – hence the name photosynthesis, from the Greek phōs (φῶς), "light", and synthesis (σύνθεσις), "putting together". Most plants, algae, and cyanobacteria perform photosynthesis; such organisms are called photoautotrophs. Photosynthesis is largely responsible for producing and maintaining the oxygen content of the Earth's atmosphere, and supplies most of the energy necessary for life on Earth.

Although photosynthesis is performed differently by different species, the process always begins when energy from light is absorbed by proteins called reaction centers that contain green chlorophyll (and other colored) pigments/chromophores. In plants, these proteins are held inside organelles called chloroplasts, which are most abundant in leaf cells, while in bacteria they are embedded in the plasma membrane. In these light-dependent reactions, some energy is used to strip electrons from suitable substances, such as water, producing oxygen gas. The hydrogen freed by the splitting of water is used in the creation of two further compounds that serve as short-term stores of energy, enabling its transfer to drive other reactions: these compounds are reduced nicotinamide adenine dinucleotide phosphate (NADPH) and adenosine triphosphate (ATP), the "energy currency" of cells.

In plants, algae and cyanobacteria, sugars are synthesized by a subsequent sequence of light-independent reactions called the Calvin cycle. In the Calvin cycle, atmospheric carbon dioxide is incorporated into already existing organic carbon compounds, such as ribulose bisphosphate (RuBP). Using the ATP and NADPH produced by the light-dependent reactions, the resulting compounds are then reduced and removed to form further carbohydrates, such as glucose. In other bacteria, different mechanisms such as the reverse Krebs cycle are used to achieve the same end.

The first photosynthetic organisms probably evolved early in the evolutionary history of life and most likely used reducing agents such as hydrogen or hydrogen sulfide, rather than water, as sources of electrons. Cyanobacteria appeared later; the excess oxygen they produced contributed directly to the oxygenation of the Earth, which rendered the evolution of complex life possible. Today, the average rate of energy capture by photosynthesis globally is approximately 130 terawatts, which is about eight times the current power consumption of human civilization. Photosynthetic organisms also convert around 100–115 billion tons (91–104 Pg petagrams, or billion metric tons), of carbon into biomass per year. That plants receive some energy from light – in addition to air, soil, and water – was first discovered in 1779 by Jan Ingenhousz.

Photosynthesis is vital for climate processes, as it captures carbon dioxide from the air and then binds carbon in plants and further in soils and harvested products. Cereals alone are estimated to bind 3,825 Tg (teragrams) or 3.825 Pg (petagrams) of carbon dioxide every year, i.e. 3.825 billion metric tons.